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Abstract—Graph analytics is becoming increasingly popular,
with a number of new applications and systems developed in
the past few years. In this paper, we study Vertica relational
database as a platform for graph analytics. We show that vertex-
centric graph analysis can be translated to SQL queries, typically
involving table scans and joins, and that modern column-oriented
databases are very well suited to running such queries. Fur-
thermore, we show how developers can trade memory footprint
for significantly reduced I/O costs in Vertica. We present an
experimental evaluation of the Vertica relational database system
on a variety of graph analytics, including iterative analysis,
a combination of graph and relational analyses, and more
complex 1-hop neighborhood graph analytics, showing that it is
competitive to two popular vertex-centric graph analytics systems,
namely Giraph and GraphLab.

I. INTRODUCTION

Recent years have seen growing interest in the area of
graph data management. This focus on graphs arises from their
use in a number of new applications, including social network
analytics, transportation, ad and e-commerce recommendation
systems, and web search. Given the popular demand for graph
analytics, a natural question is whether or not traditional
database systems really are a bad fit for these graph analytics
workloads? This question arises because, in many real-world
scenarios, graph data is collected and stored in a relational
database in the first place and it is expensive to move data
around. Given this, if it is avoidable, users may prefer not
to export their data from the relational database into a graph
database. Rather, they would like to perform the graph analyt-
ics (with comparable performance) directly with the relational
engine, without the expensive step of copying data into a file
system (or distributed storage system like HDFS), in order to
be processed by a graph system, and then (possibly) back into
the relational system for further storage and analyses.

Apart from the need to avoid copying data in and out of
file systems, graph engines suffer from another limitation. As
graphs get larger and larger, frequently the users want to (or
will have to) select a subset of a graph before performing
analysis on it. For example, it is unlikely that a user will run
a single-source shortest path query on the entire trillion node
Facebook graph — this would be prohibitively slow on any
system. Rather, it is more likely that users will run several
shortest paths queries over different subsets of the graph (e.g.,
the N-hop neighbors of some particular user.) Furthermore,
real-world graphs have vertices and edges accompanied by
several other attributes. For example, edges in a social network
may be of different types such as friends, family, or classmates.
Similarly nodes may have several attributes to describe the
properties of each person in the social network, e.g., their
username, birthdate, and so on. Given such metadata, an
analyst would typically do some ad-hoc relational analysis in
addition to the graph analysis. For instance, the analyst may

want to preprocess and shape the graph before running the
actual graph algorithm, e.g., filtering edges based on timestamp
or limiting the graph to just close friends of a particular user.
Similarly, he may want to analyze the output of the graph
analysis, e.g., computing aggregates to count the number of
edges or nodes satisfying some property, or other statistics.
Such pre- and post- processing of graph data requires relational
operators such as selection, projection, aggregation, and join,
for which relational databases are highly optimized.

In addition to combining relational analysis, several graph
analyses compute aggregates over a larger neighborhood. For
example, counting the triangles in a graph requires every vertex
to access its neighbors’ neighbors (which could potentially
form the three vertices of the triangle). Likewise, finding
whether a vertex acts as a bridge (weak ties) between two
disconnected vertices requires every vertex to check for the
presence of edges between its neighbors, i.e. the 1-hop neigh-
borhood. Vertex-centric interfaces like Pregel [1] are tedious
for expressing the above queries, as they require sending
neighborhood information to all its neighbors in the first
superstep and then performing the actual analysis in the second
superstep. SQL, on the other hand, is a much more powerful
and general purpose language for capturing such analyses. For
example, in Vertica, we can express triangle counting as a
three-way self-join over the edge table very efficiently [2].
Similarly, we can detect weak ties using two inner joins (to
get the two vertices on either side of the bridge) and one outer
join (to make sure that the two vertices are not connected by
an edge). Thus, by simply adding more joins, SQL is more
flexible at expressing such graph analyses.

In this paper, we describe four key aspects necessary to
build high-performance graph analytics in the Vertica column-
oriented database. First, we look at how we can translate
the logical query plans of vertex-centric graph queries into
relational operators and run them as standard SQL. Although
vertex compute functions can be rewritten into pure SQL
in some cases, we find that table UDFs (offered by many
relational databases, including Vertica) are sufficient to express
arbitrarily complex vertex functions as well. Second, we show
several query optimization techniques to tune the performance
of graph queries on Vertica. These include considering up-
dating vs replacing the nodes table on each iteration, incre-
mental evaluation of queries, and eliminating redundant joins.
Third, we outline several features specific to a column-store
like Vertica that makes it well suited to run graph analytics
queries. Finally, we show how Vertica can be optimized using
table UDFs to run iterative graph analytics in-memory, which
significantly reduces the disk I/Os (and overall query time) at
the cost of higher memory footprint.
Contributions. Our key contributions are as follows:
(1.) We take a closer look at vertex-centric graph processing,



using Giraph (a popular graph analytics system) as an example.
We show that vertex-centric graph processing can be expressed
as a query execution plan, which in the case of Giraph is a fixed
plan that is used to run all Giraph programs. We then show
that this plan can be expressed as a logical query plan that can
be optimized using a relational query optimizer (Section III).
(2.) We show how we can translate this vertex-centric plan
into SQL, which can be run on standard relational databases.
We describe several query optimizations to improve the perfor-
mance of vertex-centric queries and describe Vertica specific
features to run these queries efficiently. As a concrete example,
we discuss the physical query execution plan of single source
shortest path on Vertica. Lastly, we show how Vertica can be
extended to run the entire unmodified vertex-centric query in-
memory and as a single transaction (Section IV).
(3.) We provide an extensive experimental evaluation of sev-
eral typical graph queries on Vertica. We compare it with two
popular vertex-centric graph processing systems, GraphLab
and Giraph. Our key findings are: (i) Vertica has comparable
end-to-end performance to these popular vertex-centric sys-
tems, (ii) Vertica has a much smaller memory footprint than
other systems, at the cost of higher disk I/O, (iii) We can extend
Vertica to trade an increased memory footprint for faster run-
times, comparable to that of GraphLab, (iv) relational engines
naturally excel at combining graph analysis with relational
analysis, and (v) column-stores can efficiently implement more
complex 1-hop neighborhood graph analyses (Section V).

II. RELATED WORK

Existing graph data management systems address two
classes of query workloads: (i) low latency online graph
query processing, e.g. social network transactions, and (ii) of-
fline graph analytics, e.g. PageRank computation. Typical
examples of systems for online graph processing include
RDF stores (such as Jena [3]), key value stores (such
as HypergraphDB [4]), and native graph stores (such as
Neo4j [5]). Other graph processing systems wrap around rela-
tional databases to provide efficient online query processing,
e.g., TAO [6] and FlockDB [7], which wrap around MySQL
to build a distributed and scalable graph processing system.

Graph analytics, on the other hand, is seen as completely
different from traditional data analytics, typically due to the
iterative nature and the perceived awkwardness of expressing
graph analytics as SQL queries (which typically involves mul-
tiple self-joins on tables of nodes and edges). Examples queries
include computing statistics and other metrics over graphs,
such as PageRank or shortest paths. As a result, a plethora of
graph processing systems have been recently proposed. These
include vertex-centric systems, e.g. Pregel [1], Giraph [8],
GraphLab [9] and its extensions [10], [11], [12], GPS [13],
Trinity [14], GRACE [15], [16], Pregelix [17]; neighborhood-
centric systems, e.g. Giraph++ [18], NScale [19], [20]; datalog-
based systems, e.g. Socialite [21], [22], GrDB [23], [24];
SPARQL-based systems, e.g. G-SPARQL [25]; and matrix-
oriented systems, e.g. Pegasus [26].

Recent works have also looked at specific graph analysis
using relational databases. Examples include triangle count-
ing [2], shortest paths [27], [28], subgraph pattern match-
ing [29], [30], and social network analysis [31], [32]. Oth-
ers have looked at the utility of combining graph analysis

with relational operators [33]. Data flow systems such as
GraphX [34], Naiad [35], and epiC [36] further support more
general end-to-end data processing. Grail provides a layer
for expressing vertex-centric queries and compiling them into
SQL, and the authors run it on a single node row-store [37].

In this work, we have a particular emphasis on showing
how vertex-centric graph processing can be translated and
optimized on Vertica, and compare it to specialized graph
systems in a distributed setting.

III. BACKGROUND

In this section, we first recap the popular vertex-centric
programming model. Then, to understand the graph processing
in a typical vertex-centric system, we analyze the execution
pipeline in Giraph, an open-source implementation of Pregel,
and express it as a logical query plan. Other Pregel-like
systems use a similar static query plan, though some may use
different scheduling strategies, e.g. GraphLab.

Vertex-centric Model. In the vertex-centric programming
model, the user provides a UDF (the vertex program) spec-
ifying the computation that happens at each vertex of the
graph. The UDFs update the vertex state and communicate
by sharing messages with neighboring vertices. For example,
to implement single source shortest paths (SSSP), each vertex
compares its current shortest distance to the distance reported
by each of its neighbors, and if a shorter distance is found,
updates its distance and propagates the updated distance to
its neighbors. The underlying execution engine may choose
to run the vertex-centric programs synchronously, as a series
of supersteps with synchronization between them, or asyn-
chronously, where threads update a representation of the graph
in shared memory. Programmers do not have to worry about
details such how the graph is partitioned across nodes/threads,
how it is distributed across multiple machines, or how message
passing and coordination works. Each vertex may be on the
same physical machine or a different, remote machine.
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Fig. 1. Giraph Physical Plan.

We now provide a detailed
study of execution work-
flow used in Giraph. Giraph
executes the vertex-centric
query as a map-only job (the
GiraphMapper) on Hadoop
MapReduce, i.e., the mappers
are simply the containers for
Giraph workers. These map
jobs run for the duration of
the job, repeatedly executing
the compute UDF and com-
municating with other map-
pers over sockets. To illustrate
this data flow, Figure 1 shows
the physical execution of Gi-
raph with four workers W1 to
W4. The execution in Giraph
is organized into supersteps,
wherein each worker operates
in parallel during the super-
step and the workers synchro-
nize at the end of the superstep. During the InputSuperstep,
the system splits the input graph into a list of vertices V and



list of edges E as it reads data from HDFS. Each worker reads
the split assigned to it, parses it into vertices and edges, and
partitions them across all workers, typically using a hash-based
partitioner. Each worker then builds its ServerData, consisting
of three components: (i) the partition store to keep the parti-
tion vertices and related metadata, (ii) the edge store to keep
the partition edges and related metadata, and (iii) the message
store to keep the incoming messages for this partition. At
the end of the InputSuperstep, i.e. when all workers have
finished creating the ServerData, the workers are ready to
perform the actual vertex computation. In each superstep after
the InputSuperstep, the workers run the vertexCompute UDF
for the vertices in their respective partition and shuffle the
outgoing messages across all workers. The workers then update
their respective ServerData and wait for everyone to finish the
superstep (the synchronize barrier). Finally, when there are no
more messages to process, the workers store the output graph
back in HDFS during the OutputSuperstep. Thus, we see that
similar to MapReduce execution in Hadoop [38], Giraph has
a static hard-coded query execution pipeline.

Giraph Logical Query Plan. The above Giraph physical
execution pipeline can also be represented as a logical query
plan, consisting of relational operators and the vertexCompute
UDF. Figure 2 shows such a simplified logical query plan.
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Fig. 2. Logical Plan.

Assuming that the graph structure itself
remains unchanged1, the Giraph execution
pipeline is essentially a distributed vertex up-
date query. That is, it takes the set of vertices
V (each having an id and a value), edges E
(each having a source and a destination vertex
id) and messages M (each having destina-
tion vertex id and the message value), runs
the vertexCompute UDF for each vertex, and
produces the set of output vertices (V 0) and messages (M 0).

The downside of the above vertex-centric query execution
in Giraph is that all graph analysis is forced to fit into a
fixed query plan. This is not desirable for several analyses,
e.g., triangle counting, which requires a three-way join over
the edges table. Moreover, the Giraph logical query plan is
not really implemented as a composition of query operators,
making it very difficult to modify, extend, or add functionality
to the execution pipeline. For instance, the join with M is
implemented as a sort merge join; changing to another join
implementation would require several deep changes in the
system. Furthermore, even if one could extend or modify the
physical execution pipeline, e.g. switch merge join to hash
join, Giraph cannot make dynamic decisions regarding the best
physical plan. For example, hash join may be suitable for very
large numbers of intermediate messages and merge join better
for small numbers of messages. Giraph does not have this
flexibility. Finally, Giraph is a custom built query processor
restricted to a specific type of graph analysis. It cannot be
used for broader types of queries, e.g. multi-hop analysis, or
end-to-end graph analysis, e.g. analyzing the output of graph
analysis, or combining multiple graph analyses.

In the rest of the paper, we show how relational databases
can overcome many of these limitations and, in particular, how
Vertica is highly suited for a variety of graph analytics.

1This is true for several typical vertex-centric graph analysis, such as
PageRank, shortest paths, connected components, etc.

Hash-based shuffling  
No sorting, as 
opposed to Hadoop 
Intermediate data is 
not persisted

G
ira

ph
 M

ap
pe

r

V
M

V’ U M’
vertexCompute

γV

V.id=E.from
V.id=M.to

E

E

M

vertexCompute

γ
V

V.id=M.to

M’

V’

V

V.id=E.from

E

vertexCompute

γV1

V1.id=E.to

V’

V1
V2

V2.id=E.from

1 2 3

V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

Γd’=min(V2.d+1)

σd’<V1.d

V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

Γcc’=min(V2.id)

σcc’<V1.cc V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

ΓV1.r=0.15/n+0.85* 
sum(V2.r/V2.outD)

Giraph logical 
query plan

Pushing down the  
vertexCompute UDF

Replacing M 
by V     E

Fig. 3. Rewriting Giraph Logical Query Plan.

IV. GRAPH ANALYTICS USING VERTICA

In this section, we describe how we can: (i) translate vertex-
centric graph analyses to standard SQL queries, (ii) apply
several query optimizations to improve the performance of
graph analyses, and (iii) leverage key features of Vertica for
efficiently executing these graph analytics queries.

A. Translation to SQL

In the following, we describe how we rewrite and translate
the Giraph logical query plan to standard SQL.

1) Eliminating the message table: Consider again the Gi-
raph logical query plan, shown on the left in Figure 3. The
relation M in this plan is an intermediate output and an artifact
of message passing, a consistency mechanism in Giraph. Since
relational databases take care of consistency and allow us to
operate directly on the relational tables, we can get rid of
M . Note that the relation M is used to communicate the
new values of vertices to its neighbors. Therefore, we can
push down the vertex compute function and obtain the new
messages M 0 by joining the new vertex values (V 0) with the
outgoing edges (E), as shown in the middle of Figure 3.
Finally, we can replace M with V 1 E and get rid of
relation M completely, as shown on the right in Figure 3.
This simplified query plan deals only with relations V and E
as the input and produces modified relation V 0 as output.

2) Translating the vertex compute functions: The vertex-
Compute in the Giraph logical query plan (Figure 2) can be
an arbitrary user defined function, similar to map/reduce in the
MapReduce framework. However, for many graph analytics,
the vertex function involves relatively simple and well defined
aggregate operations, which can be expressed directly in
relational algebra/SQL. For example, the vertex function for
SSSP finds the MIN of the neighboring distances and applies
the filter for detecting smaller distances, i.e.:

SSSP : vertexCompute 7�! �d’<V1.d(�d’=min(V2.d+1))

Figure 4(a) shows the resulting logical query plan. Similarly,
the vertex function for connected components finds the min-
imum vertex ID amongst its neighbors and filters for new
minimum found (Figures 4(b)), whereas the vertex function
for PageRank combines the PageRank of its neighbors (Fig-
ure 4(c)), i.e.:

CC : vertexCompute 7�! �cc’<V1.cc(�cc’=min(V2.id))

PageRank : vertexCompute 7�! �
V1.r= 0.15

n

+0.85⇤sum(
V2.r

V2.outD

)

By rewriting the vertex functions as relational expressions,
the resulting query plans become purely relational and can
be implemented completely in standard SQL, without using
user-defined function features in the database system at all
(we describe a more general implementation based on UDFs
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(a) SSSP
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(b) CC
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(c) PageRank

Fig. 4. Logical query plans for three vertex-centric queries: (i) single source
shortest path (SSSP), (ii) connect components (CC), and PageRank.

in Section IV-D below). For instance, we could write SSSP
from Figure 4(a) as the following SQL expression:
SELECT v1.id, MIN(v2.d+1) AS d

FROM vertex AS v1, edge AS e, vertex AS v2
WHERE v2.id = e.from_node AND v1.id = e.to_node
GROUP BY e.to_node, v1.d
HAVING MIN(v2.d+1) < v1.d

The above SQL query computes the minimum neighboring
distance of every vertex and filters, via the HAVING clause,
distances that are smaller than the already known distance.
The resulting vertices can then be used to update the vertex
relation, as shown in Listing 1.

UPDATE vertex AS v SET v.d=v’.d
FROM (

SELECT v1.id, MIN(v2.d+1) AS d
FROM vertex AS v1, edge AS e, vertex AS v2
WHERE v2.id = e.from_node AND v1.id = e.to_node
GROUP BY e.to_node, v1.d
HAVING MIN(v2.d+1) < v1.d

) AS v’
WHERE v.id=v’.id;

Listing 1. Shortest Path in SQL.

Finally, a driver program (run via a stored procedure)
repeatedly runs the above shortest path query as long as at
least one of the vertices finds a shorter distance.

B. Query Optimizations

The advantage of expressing graph analysis as relational
queries is that we can apply several relational query opti-
mizations, i.e. we have the flexibility to optimize the queries
in several different ways in order to boost performance, in
contrast to the hard-coded execution pipeline in Giraph. In the
following, we present three such query optimizations that can
be used to tune the performance. We use vertex-centric single
source shortest paths as the running example. However, of
course, these optimizations are applicable in general to SQL-
based graph analytics.

1) Update Vs Replace: Graph queries often involve updat-
ing large portions of the graph over and over again. However,
large number of updates can be a barrier to good performance,
especially in read optimized systems like Vertica. To overcome
this problem, we can instead replace the vertex or edge table
with a new copy of tables containing the updated values. For
instance, the single source shortest path involves updating all
vertices that find a smaller distance in an iteration. As we
explore the graph in parallel, the number of such vertices
can quickly grow very large. Therefore, instead of updating
the vertices in the existing vertex relation, we can create a
new vertex relation (vertex_prime) by joining the updated
vertices with the non-updated vertices:

CREATE TABLE vertex_prime AS
SELECT v.id, ISNULL(v’.d, v.d) AS d

FROM vertex AS v LEFT JOIN (
SELECT v1.id AS id, MIN(v2.d+1) AS d

FROM vertex AS v1, edge AS e, vertex AS v2
WHERE v2.id=e.from_node AND v1.id=e.to_node
GROUP BY e.to_node, v1.d
HAVING MIN(v2.d+1) < v1.d

) AS v’
ON v.id = v’.Id ;

Listing 2. Shortest Path with Replace instead of Update.

Afterwards, we replace vertex with vertex_prime. This re-
placement is quite fast, and, in general, creating a new table is
faster than updating because it allows new records to be written
sequentially to the table, rather than performing random I/O to
update-in-place or recording large delete lists in Vertica. One
downside of this approach is that we lose the physical design
(i.e., indexes) on the original table, and physical designs are
expensive to create during query execution. However, many
graph analyses, including PageRank and SSSP, update only the
smaller vertex table and therefore the physical designs on the
larger edge table can be preserved. Still, update-in-place may
be more efficient for algorithms that perform small numbers of
updates. For instance, the parallel graph exploration in single
source shortest path updates very few vertices in the first few
iterations. Therefore, a more sophisticated approach is to apply
updates in the first few iterations before switching to replace.
In this work, we experimentally determine a fixed threshold to
switch from updates to replace. Eventually, of course, a cost-
based optimizer could be use to determine when to switch.

2) Incremental Evaluation: Typically, iterative queries pro-
cess different portions of the data in different iterations. As a
result, there is an opportunity for incremental query evaluation.
This is applicable to iterative graph queries as well. For exam-
ple, in single source shortest path, we do not need to explore
the entire graph in every iteration. We need to only explore
the neighbors of vertices that found a smaller distance in the
previous iteration. This introduces the overhead of keeping
track of such vertices from previous iteration, but allows us to
benefit by only joining the incrementally updated vertices table
(v_update) with its neighbors. To achieve this, we initialize
v_update with the startNode since that is the only vertex
that updated its distance to 0. Thereafter, in each iteration, we
get the new set of updated vertices (v_update_prime) from
the existing set (v_update). Although we need to materialize
additional intermediate output, we are able to exploit it to
significantly reduce the join cardinalities by expanding only
the neighbors of the updated vertices. We can then replace
v_update by v_update_prime and get the updated set of
vertices. Listing 3 shows the incrementally evaluated single
source shortest path query. Note that Giraph actually employs
a similar optimization as it only computes updates for active
vertices in each superstep.

3) Join Elimination: Several graph analysis perform
neighborhood access without reading the metadata associated
with the neighboring vertices.
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Fig. 5. Join Elimination in PageRank.

This means that even though
the logical query plan may
have a join between the vertex
and the edge table, we read
only the vertex id from the
vertex table. Thus, the join is
redundant and can be elimi-



CREATE TABLE v_update_prime AS
SELECT v1.id, MIN(v2.d+1) AS d

FROM v_update AS v2, edge AS e, vertex AS v1
WHERE v2.id=e.from_node AND v1.id=e.to_node
GROUP BY e.to_node, v1.d
HAVING MIN(v2.d+1) < v1.d;

DROP TABLE v_update;
ALTER TABLE v_update_prime RENAME TO v_update ;

CREATE TABLE vertex_prime AS
SELECT v.id, ISNULL(v_update.d, v.d) AS value

FROM vertex AS v LEFT JOIN v_update
ON v.id = v_update.id ;

DROP TABLE vertex; ALTER TABLE vertex_prime RENAME TO vertex;

Listing 3. Shortest Path with Incremental Evaluation.

nated. For example, in the logical query plan for PageRank in
Figure 4(c), we read only the vertex id from V1. Therefore,
the join with V1 is redundant and can be eliminated as shown
in Figure 5. Eliminating one of the joins in the above query
will result in much better performance because the output of
V2 1 E, which is as big as the number of edges itself, does
not need to be re-partitioned again to perform the second join.

In summary, vertex-centric graph analyses can be translated
to SQL, enabling several optimization techniques to tune the
performance. In the following section, we look at the actual
query execution of these graph queries and describe what
makes Vertica a good choice for such analyses.

C. Query Execution

In the previous section, we saw that graph analyses typi-
cally involve full table scans and joins over the vertex and the
edge tables. We now look at some of the features that makes
Vertica well-suited for executing such queries. Specifically, we
describe four key features that Vertica provides: (i) optimized
physical database design, (ii) join optimizations, (iii) query
pipelining, and (iv) intra-query parallelism. Thereafter, we
walk through the query execution plan of single source shortest
path in Vertica and contrast it with that of Giraph.

1) Physical Design: Vertica provides rich support for cre-
ating physical designs in order to boost query performance.
For instance, it allows creating projections, sort orders, and
segmentations within and across different nodes, as well as
several encoding and compression schemes. See [39] for
more details on physical design using Vertica. Although the
columnar data representation is not useful for projections over
narrow vertex and edge tables with just a few columns, it is
useful for efficiently compressing these tables and saving disk
I/O. As a result, we can create multiple table projections over
these tables, in order to boost the performance of queries, while
still not exceeding the raw data size. For instance, we can
create two projections over the edge table, one segmented on
from_node and the other on to_node, in order to perform
different self-joins over the edge table locally. Likewise, we
can sort the projections on different attributes for performing
merge join instead of hash join as well as for evaluating
selection predicates.

Thus, using Vertica, developers can efficiently encode and
compress their graph data, create multiple sort orders and
partitionings, and based on the physical design, leverage the
query optimizer to automatically pick the best physical query
operators for their analysis at run time.

2) Join Optimizations: Graph analyses when written in
SQL make heavy use of joins. Vertica is highly optimized to
efficiently execute such joins over large tables. For example,
it can perform joins directly on compressed data without
decoding it, apply type dependent just-in-time compilation
of the join condition in order to avoid branching, and use
sideways information passing (SIP) to push down the join
condition as selection predicate over the outer input and thus
filter tuples early on [40]. Furthermore, databases are not
limited to a specific join implementation. Rather, the optimizer
can choose between hash or merge joins, or even dynamically
switch between the two.

Efficient join processing is a key feature that makes graph
analysis possible in Vertica, by allowing developers to quickly
traverse and manipulate large graphs via repeated self-joins.

3) Query Pipelining: Vertica supports pipelined query ex-
ecution, which avoids materializing intermediate results that
would otherwise require repeated access to disk. This is im-
portant because graph queries involve join operations that can
have large intermediate results which can benefit dramatically
from pipelining. For instance, in each iteration, the single
source shortest path joins a vertex with its incoming edges
and incoming nodes, thereby resulting in an intermediate result
with cardinality equal to the number of edges. We can induce
pipelining for such queries by creating sort orders on join and
group by attributes. Additionally, we can express graph opera-
tions as nested queries, allowing the query optimizer to employ
pipelining between the inner and outer query when possible.
This is in contrast to Giraph, which blocks the execution and
materializes all intermediate output before running the vertex
compute function.

Thus, pipelining allows Vertica to avoid materializing large
intermediate outputs, which are typical in graph queries. This
reduces memory footprint and improves performance.

4) Intra-query Parallelism: Vertica includes capabilities
that allow it employ multiple cores to process a single query.
To allow Vertica to explore graphs in parallel as much as
possible, we rewrite graph exploration queries that involve a
self-join on the edges table by adding a GROUP BY clause on
the edge id, and let Vertica partition the groups across CPU
cores to process subgraphs in parallel. Though such parallel
graph exploration ends up doing more work in each iteration,
it still reduces the number of joins and results in much better
performance.

5) Example SSSP Query Execution on Vertica: We now
look at the specific example of physical query execution plan
for single source shortest path (SSSP) on Vertica. Figure 6
shows the plan for running SSSP over the Twitter graph (41
million nodes, 1.4 billion edges). The query involves two joins,
one hash and the other sort merge. To perform the hash join,
the system broadcasts the smaller node relation (shown in the
middle). While scanning the large edge relation, the query
applies two SIP filters, one for the hash join condition and
other for the merge join condition, in order to filter unnecessary
tuples at the scan step itself. The hash join blocks on the
smaller node relation. However, once the hash table is built,
the remainder of the query is fully pipelined, including the
merge join, the group by, and writing the final output. This is
possible because the merge join and the group by are on the



BASE QUERY PLAN
Query: explain SELECT e.to_node AS id, min(n1.value+1) AS value

        FROM twitter_node AS n1, twitter_edge AS e, twitter_node AS n2
        WHERE n1.id=e.from_node AND n2.id=e.to_node

        GROUP BY e.to_node
HAVING min(n1.value+1) < min(n2.value);

All Nodes Vector: 

  node[0]=node0 (initiator) Up
  node[1]=node1 (executor) Up
  node[2]=node2 (executor) Up
  node[3]=node3 (executor) Up

Root 
OutBlk=[UncTuple(2)]

NewEENode 
OutBlk=[UncTuple(2)]

ExprEval: e.to_node, <SVAR>

Recv from: node0,node1,node2,node3

Send to: node0

FilterStep: (<SVAR> < <SVAR>)

GroupByPipe: 1 keys
Aggs: min((n1.value + 1)), min(n2.value)

StorageMergeStep: twitter_edge; 1 sorted

GroupByPipe: 1 keys
Aggs: min((n1.value + 1)), min(n2.value)

ExprEval: 
  e.to_node, (n1.value + 1), n2.value

Join: Merge-Join: 
using previous join and twitter_node_b0

Join: Hash-Join: 
using twitter_edge and twitter_node_b0

ScanStep: twitter_edge
SIP2(HashJoin): e.from_node
SIP1(MergeJoin): e.to_node

to_node (not emitted),from_node
Recv from: node0,node1,node2,node3

Send to: node0,node1,node2,node3

StorageUnionStep: twitter_node_b0

ScanStep: twitter_node_b0
id, value

StorageMergeStep: twitter_node_b0; 1 sorted

ScanStep: twitter_node_b0
id, value

Fig. 6. Query execution plan of shortest paths in Vertica.

same key. As a result, data does not need to be re-segmented
for the group by and the system performs 1-pass aggregation
locally on each machine.

The above query execution plan is different from the
Giraph query execution pipeline of Figure 1 in three ways:
(i) it filters the unnecessary tuples from the large edge table as
early as possible by using sideways information passing, (ii) it
fully pipelines the query execution as opposed to blocking
the data flow at the vertex function in Giraph, and (iii) it
picks the best join execution strategies and broadcasts the
data wherever required as compared to the static hard-coded
join implementation in Giraph. As a result, Vertica is able to
produce better execution strategies for such graph queries.

D. Extending Vertica

Relational database are extensible by design via the use
of UDFs. We see how we can extend Vertica to address two
issues: (i) how to run unmodified vertex programs without
translating to SQL, and (ii) avoiding the expensive intermediate
disk I/O in iterative graph queries.

1) Running Unmodified Vertex Programs: We saw in Sec-
tion IV-A that several common vertex functions can be rewrit-
ten as relational operators. However, certain algorithms, such
as collaborative filtering, have more sophisticated vertex func-
tion implementations which cannot easily be mapped to SQL
operators. We can, however, still run vertex functions as table
UDFs in Vertica without translating to relational operators. The
middle of Figure 7 shows such a logical query plan. We first
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Fig. 8. In-memory Vertex-centric Query Execution in Vertica.

partition the vertices, then sort the vertices in each partition,
and finally invoke the table UDF for each partition. The table
UDF iterates over each vertex, invokes the vertexCompute
function over it, and outputs the union of updated vertices (V 0)
and outgoing messages (M 0). As an optimization, by batching
several vertices in each table UDF, we can significantly reduce
the UDF overhead in relational databases. This query plan can
be further improved by replacing the table joins with unions,
as shown in the right of Figure 7. The table UDF is then
responsible for segregating the tuples from different tables
before calling the vertex function.

2) Avoiding Intermediate Disk I/Os: Iterative queries gen-
erate a significant amount of intermediate data in each iter-
ation. Since relational databases run iterative queries via an
external driver program, the output of each iteration is spilled
to disk, thereby resulting in substantial additional I/O. This I/O
also happens when running vertex functions as table UDFs.
However, we can implement a special table UDF in which
the UDF instances load the entire graph at the beginning
and store the graph in shared memory, without writing the
output of each iteration to disk (emulating the Giraph-like map-
only behavior using table UDFs in Vertica). The right side of
Figure 8 shows such a query plan. Of course this approach
has less I/O at the cost of a higher memory footprint. And
since the entire graph analysis runs as a single transaction,
many of the database overheads such as locking, logging,
and buffer lookups are further reduced. However, the UDF
is now responsible for materializing and updating V 1 E, as
well as propagating the messages from one iteration to the
other (the synchronization barrier). Still, once implemented2,
the shared memory extension allows users to run unmodified
vertex programs (or those which are difficult to translate to
SQL). It can also yield a significant speed-up (up to 3 times)
over even native SQL variants (as shown in our experiments).

2Our current implementation runs on multiple cores on a single node. Future
work will look at distributing it across several nodes.
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Fig. 9. Typical vertex-centric Analysis Using Vertica.

V. EXPERIMENTS

In this section, we analyze and benchmark the performance
of Vertica (version 6.1.2) on graph analytics, and compare it
to dedicated graph-processing systems (Giraph and GraphLab).
We organize our experiments as follows. First, we look at the
performance of typical graph queries over large billion-edge
graphs. Second, we dig deeper and look at the memory foot-
print and disk I/Os incurred and analyze the differences. Third,
we evaluate our in-memory table UDF implementation of
vertex-centric programs over different graph analyses. Fourth,
we study end-to-end graph processing, comprising of graph
algorithms combined with relational operators to sub-select
and project portions of the graph prior to running analytics,
and perform aggregations and joins after the graph analysis
completes. Finally, we look at more complex graph analytics
beyond vertex-centric analysis, namely 1-hop analysis, and
evaluate the utility of Vertica on these operations.
Setup. Our test bed consists of a cluster of 4 machines,
each having 12 (6x2) 2GHz Xeon cores, running 24-threads
with hyper-threading, 48GB of memory, 1.4T disk, running on
RHEL Santiago 6.4. We ran all experiments with cold cache
and report the average of three runs. We compare Vertica with
two popular vertex-centric graph processing engines, Giraph
(version 1.0.0 running on Hadoop 1.0.4 with 4 workers per-
node) and GraphLab (version 2.2 running on 4 nodes via MPI
and using all available threads). We ran our benchmarks on a
variety of datasets of varying sizes, including both directed as
well as undirected graphs. Table I shows the different datasets
used in our evaluation. All datasets are publicly available at
http://snap.stanford.edu/data.

Type Name Nodes Edges

Directed

Twitter-small 81,306 1,768,149
LiveJournal 4,847,571 68,993,773
Twitter 41,652,230 1,468,365,182

Undirected YouTube 1,134,890 2,987,624
LiveJournal-undir 3,997,962 34,681,189

TABLE I. THE DATASETS USED IN THE EVALUATION.

Data Preparation. The queries in our experiments read data
from an underlying data store before running the analysis.
While Vertica reads data from its internal data store, Giraph
and GraphLab read the data from HDFS. All datasets are stored
as a list of nodes and a list of edges. For GraphLab, we
further split the data files into 4 parts, such that each node
can load (ingress=grid) the graph in parallel during analysis.
Table II summarizes the data preparation costs for the three
systems. We can see that Giraph and GraphLab simply copy
the raw files to HDFS and load faster than Vertica. However,
Vertica has significantly less disk usage, due to compression
and encoding, compared to Giraph and GraphLab.

Metric Dataset Vertica GraphLab Giraph

Upload Time (sec) LiveJournal 45.927 15.621 12.049
Twitter 916.421 472.358 267.799

Disk Usage (GB) LiveJournal 0.423 3.030 3.030
Twitter 9.964 73.140 73.140

TABLE II. DATA PREPARATION OVER TWO DATASETS.

A. Typical Vertex-centric Analysis
We first look at the performance of three typical graph

queries, namely PageRank (PR), SSSP, and connected com-
ponents (CC), on Vertica and compare it with Giraph and
GraphLab. Then, we break the total query time into the time
to load/store from disk and the actual graph analysis time. We
used the built-in PageRank, SSSP, and connected component
algorithms for Giraph (provided as example algorithms) and
GraphLab (provided in the graph analytics toolkit). For Vertica,
we implemented these three algorithms as described below:
PageRank. We implemented PageRank query shown in Fig-
ure 5 as a combination of two SQL statements on the Vertex
(V) and Edge (E) tables: (i) to compute the outbound PageRank
contributed by every vertex:
CREATE TABLE V_outbound AS
SELECT id, value/Count(to_id) AS new_value

FROM E,V
WHERE E.from_id=V.id
GROUP BY id,value;

and (ii) to compute the total PageRank of a vertex as a sum
of incoming PageRanks:
CREATE TABLE V_prime AS
SELECT to_node AS id, 0.15/N+0.85*SUM(new_value) AS value

FROM E,V_outbound
WHERE E.from_id=V_outbound.id
GROUP BY to_id;

After each iteration, we replace the old vertex table V with
V_prime, i.e. drop V and rename V_prime to V.
Single Source Shortest Path (SSSP). We implemented SSSP
on Vertica using the query shown in Listing 3, i.e. we incre-
mentally compute the distances and replace the old vertex table
with the new one, unless the number of updates is less than
5000, in which case we update the vertex table in-place.
Connected Components. We implemented the HCC algo-
rithm [26] in Vertica (this is the same algorithm used in
Giraph). HCC assigns each node to a component identifier. We
initialize the vertex values with their ids and in each iteration
the vertex updates are computed (similar to SSSP) as follows:
CREATE TABLE v_update_prime AS
SELECT v1.id, MIN(v2.value) AS value

FROM v_update AS v2, edge AS e, vertex AS v1
WHERE v2.id=e.from_node AND v1.id=e.to_node
GROUP BY v1.id, v1.value
HAVING MIN(v2.value) < v1.value;

As in shortest paths, we apply these updates either in-place
or by replacing the vertex table, depending upon the number
of updates. Additionally, we apply two optimizations: (1) we
do not perform incremental computation at first; rather, we
update all vertices in the first few iterations, i.e. we use the
entire vertex table instead of v_update in the above query,
(2) since the component ids can be propagated in either
edge direction, we propagate them in opposite directions over
alternate iterations, i.e. we change the join condition in the
above query to: v2.id=e.to_node AND v1.id=e.from_node. These
optimizations help to significantly speed up the convergence of
the algorithm, since component ids can be propagated quickly.
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Fig. 10. The Resource Consumption of Different Systems.

Figures 9(a) and 9(b) show the query runtime of PageR-
ank (10 iterations), SSSP, and Connected Components on
GraphLab, Giraph, and Vertica over directed graphs using 4
machines. We can see that Vertica outperforms Giraph and is
comparable to GraphLab on these three queries, both on the
smaller LiveJournal graph as well as the billion edge Twitter
graph. The reason is that these queries are full scan-oriented
join queries for which Vertica is heavily optimized.

Finally, Figures 9(c) shows the runtime breakdown of the
GraphLab, Giraph, and Vertica on the Twitter graph. We
can see that the total runtime of GraphLab is dominated by
the load/store costs. In fact, the analysis time for SSSP in
GraphLab is just 25 seconds, a very small fraction of the
overall cost. In contrast, the runtimes of Giraph are dominated
by the analysis time. Vertica, on the other hand, pipelines the
data from disk and therefore there is no distinct load/store
phase. However, efficient data storage and retrieval makes
Vertica competitive in terms of the total runtime.

B. Resource Consumption

We now study the resource consumption, i.e., the memory
footprint and disk I/O, of Vertica, Giraph, and GraphLab.
Figure 10(a) shows the per-node memory consumption of
GraphLab, Giraph, and Vertica when running PageRank on
the Twitter graph using 4 machines. We can see that out of
the total 48GB memory per node, both GraphLab and Giraph
has a peak memory usage of close to 32GB, i.e., 66% of the
total memory. In contrast, Vertica has a peak usage of only
5.2GB, i.e. 11% of total memory. Thus, Vertica has a much
smaller memory footprint.

The picture changes completely if we look at the disk
I/O. Figure 10(b) shows the number of bytes read and written
to disk by GraphLab, Giraph, and Vertica in each PageRank
iteration over the Twitter graph. We can see that GraphLab
and Giraph have high read I/O in the input step and no disk
reads thereafter, whereas Vertica has no upfront read but incurs
disk reads in each iteration. Likewise, Vertica incurs high write
I/O in each iteration, whereas GraphLab and Giraph incur
writes only in the output step. Thus, in total, while Vertica
incurs less read I/O than Giraph and GraphLab (due to better
encoding and compression), it incurs much more write I/O
(due to materializing the output of each iteration to disk).

This expensive I/O for writing the iteration output is also
true when running vertex functions as table UDFs. To illustrate
this, Figure 10(c) shows the cost breakdown when running
PageRank as table UDFs. We can see that writing intermediate
output (shown in red) is the major cost in the query runtime.
To test whether we can avoid the expensive intermediate I/O
in Vertica, we implemented the shared memory UDFs as

described in Section IV-D2. The right side of Figure 10(c)
shows that the intermediate IO is indeed reduced significantly
and developers can sacrifice memory footprint for better I/O
performance in Vertica.

C. In-memory Graph Analysis

Figure 11(a) shows the runtime of the shared memory table
UDF, on the Twitter-small graph. We can see that the shared
memory implementation is almost 9 times faster than the disk-
based table UDF and even more than 3 times faster than the
SQL implementation. Figure 11(b) shows the shared memory
Vertica extension on the LiveJournal graph and compares it
with GraphLab on a single node. We can see that the actual
graph analysis time (Algorithm Time) of GraphLab and Vertica
are very similar now. However, GraphLab still suffers from
the expensive loading time while Vertica benefits from more
efficient data storage. As a result, the performance gap between
GraphLab and Vertica widens. Finally, we scale SSSP to the
billion edge Twitter graph on the shared memory Vertica
extension (single node), as shown in Figure 11(c). The single
node algorithm runtime in this case is 44.2 seconds, which
is just 1.7 times that of GraphLab on 4 nodes3. Thus, we
see that we can extend Vertica to exhibit similar performance
characteristics as main-memory graph engines.

D. Mixed Graph & Relational Analyses

Finally, we consider situations when users want to combine
graph analysis with relational analysis. We extended the graph
datasets in our experiment with the following metadata. For
each node, we added 24 uniformly distributed integer attributes
with cardinality varying from 2 to 109, 8 skewed (zipfian)
integer attributes with varying skewness, 18 floating point at-
tributes with varying value ranges, and 10 string attributes with
varying size and cardinality. For each edge, we added three
additional attributes: the weight, the creation timestamp, and
an edge type (friend, family, or classmate), chosen uniformly
at random. These attributes are meant to model additional
relational metadata that would be associated with properties of
users in a social media context. The total size of the Twitter
graph with this metadata is 66 GB.

We consider three end-to-end graph analysis: (i) Sub-graph
Projection & Selection – extract subgraph by projecting just
the node ids and selecting nodes with weight 4 and connected
by edges of type ‘Family’, before running PageRank and SSSP.
(ii) Graph Analysis Aggregation – gather distributions (equi-
width histograms) of nodes importance and distance values
after running PageRank and SSSP respectively. (iii) Graph
Joins – combine the output of PageRank and SSSP to emit

3Single node GraphLab runs out of memory on the Twitter graph.
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Query Dataset Vertica Giraph SpeedUp

Sub-graph Projection & Selection PR 55.6 954.6 17.2
SSSP 101.3 405.5 4.0

Graph Analysis Aggregation PR 643.9 1089.7 1.7
SSSP 279.8 349.9 1.3

Graph Joins PR+SSSP 927.0 1435.9 1.5

TABLE III. COMBINING GRAPH AND RELATIONAL ANALYSIS.

those nodes which are either very near (path distance less than
a given threshold) or are relatively very important (PageRank
greater than a given threshold). We compare against Giraph,
which allows users to provide custom input/output formats that
could be used to perform the projection and selection. We
write additional MapReduce jobs for the aggregation and join.
Table III shows the result on the Twitter dataset over 4 nodes.

We can see that the performance difference between Vertica
and Giraph is much higher now. For example, Vertica is 17
times faster on PageRank and 4 times faster on SSSP, as
compared to 1.6 and 1.08 earlier, when combining these anal-
ysis with sub-graph selection. Performance on Vertica could
be further improved by creating sort orders on the selection
attributes. These massive performance differences are because
Vertica is highly optimized to perform selections and exploit
late materialization to access the remaining attributes of only
the qualifying records. In contrast, Giraph incurs a complete
sequential scan of data and cannot exploit the fact that part
of the analysis is relational in nature. Rather, developers are
required to stitch Giraph programs with programs in another
data processing engine such as Hadoop MapReduce or Spark.
Similar results are obtained on aggregation and join queries.

E. Beyond Vertex-centric Analyses

Let us now look at more advanced graph analytics. Con-
sider the following two 1-hop neighborhood graph queries.

(i) Strong Overlap. Find all pairs of nodes having a large
number of common neighbors, between them (overlap). We
could also extend the algorithm to include other definitions
of overlap. Such an analysis to find the strongly overlapping
nodes in a graph could be useful in detecting similar entities.
To implement such a query using SQL we do a self-join on
the edge table followed by a group by on the two leaf nodes
and a count of the number of common neighbors between
them. Finally, all those pairs of nodes which have less than
the threshold number of common neighbors are filtered.
SELECT e1.from_node as n1,e2.from_node as n2, count(*)
FROM edge e1
JOIN edge e2 ON e1.to_node=e2.to_node
AND e1.from_node<e2.from_node
GROUP BY e1.from_node,e2.from_node
HAVING count(*) > THRESHOLD

(ii) Weak Ties. Find all nodes that act as a bridge (weak ties)
between a threshold number of otherwise disconnected node-

Query Dataset Vertica Giraph

Strong Overlap Youtube 259.56 230.01
LiveJournal-undir 381.05 out of memory

Weak Ties Youtube 746.14 out of memory
LiveJournal-undir 1,475.99 out of memory

TABLE IV. 1-HOP NEIGHBORHOOD ANALYSIS.

pairs. This is a slightly more complicated query because we
need to test for disconnection between node pairs. Using SQL,
this could be implemented as a three-way join, with the second
join being a left join, and counting all cases when the third
edge does not exist.
SELECT e1.to_node AS Id,
sum(CASE WHEN e3.to_node IS NULL THEN 1 ELSE 0 END)/2 AS C
FROM edge e1
JOIN edge e2 ON e1.to_node=e2.from_node
AND e1.from_node<>e2.to_node
LEFT JOIN edge e3 ON e2.to_node=e3.from_node
AND e1.from_node=e3.to_node
GROUP BY e1.to_node
HAVING C > THRESHOLD

While the above queries are straightforward to implement
and run on Vertica, they are tedious to implement in vertex-
centric graph processing systems. For instance, in Giraph, each
vertex needs to broadcast its neighborhood in the first superstep
in order to access the 1-hop neighborhood. Thereafter, we
perform the actual analysis in the subsequent supersteps.
Unfortunately, this results in replicating the graph several times
in memory. As an optimization in Giraph, we can reduce
the number of messages by sending messages only to those
neighbors with a higher node id. In addition, we can reduce the
size of messages by sending only the ids which are smaller than
the id of the receiving vertex. Still, passing neighborhoods as
messages is not natural in the vertex-centric model and incurs
the overhead of serializing and deserializing the nodes ids.

Table IV shows the performance of Vertica and Giraph over
the two 1-hop neighborhood analyses running on 4 nodes. We
can see that Giraph runs out of memory when scaling to larger
graphs (even after allocating 12GB to each of the 4 workers
on each of the 4 nodes). This is because the graphs are quite
dense and sending the entire 1-hop neighborhood results in
memory usage proportion to the graph size times the average
out-degree of a node. Vertica, on the other hand, does not
suffer from such issues and works for larger graphs as well.

VI. LESSONS LEARNED & CONCLUSION

This paper demonstrates that efficient and scalable graph
analytics is possible within Vertica relational database system.
We implemented a variety of graph analyses on Vertica as
well as two popular vertex-centric graph analytics system. Our
results show that Vertica has comparable end-to-end runtime
performance, without requiring the use of a purpose-built graph
engine. In summary, there are three key takeaways from our
analysis and evaluation in this paper.



First, graph analytics can be expressed and tuned in re-
lational databases. In particular, Vertica can be effectively
tuned to offer good performance on graph queries, yielding
performance that is competitive with dedicated graph stores.
This is because these queries typically involves full scans,
joins, and aggregates over large tables, for which Vertica
is heavily optimized. These optimizations include efficient
physical data representation (columnar layout, compression,
sorting, segmentation), pipelined query execution, and an
optimizer to automatically pick the best physical plan. We
showed the effectiveness of graph analytics on Vertica both
with declarative SQL queries, for expert users, as well as with
procedural vertex functions, for non-expert users.

Second, developers can trade higher memory footprint to
significantly reduced the I/O costs in iterative graph analytics
on Vertica. This is done by loading the relevant graph into
a shared memory and running the entire graph analysis as a
single transaction, essentially emulating specialized graph pro-
cessing systems. We implemented this shared memory graph
processing on Vertica using the table UDFs and run on multiple
cores in parallel. Such an implementation allows developers to
load and extract graph (from relational tables) only once, avoid
many of the database overheads such as locking, logging, and
buffer lookups in each iteration, and achieve main-memory
runtimes very close to those of specialized engines.

Third, relational databases, and column-stores in particular,
provide the advantage of efficiently combining graph analysis
with relational analysis. This is important because graph anal-
ysis is typically accompanied by relational analysis (selection,
projection, aggregation, join), either as a preparatory step or as
a final reporting step. Column stores such as Vertica provide
several features, including efficient layouts, sort orders, and
statistics, to perform these operations efficiently. Likewise,
advanced 1-hop graph analytics are difficult to program and
inefficient to run in vertex-centric graph systems, whereas
they are easy to run via efficient self-joins (to gather the
neighborhood) in column-stores.

Finally, relational databases come with many features such
as update handling, transactions, checkpointing and recovery,
integrity constraints, type checking, ACID etc., that are not
present (yet) in the next generation of graph processing sys-
tems. One might think of stitching multiple systems together
and coordinating between them to achieve these features,
e.g. using HBase for transactions and Giraph for analytics,
but then we have the additional overhead of stitching these
systems together. Of course, with time, graph-engines may
evolve these features, but our results suggest that these graph
systems should be layered on RDBMS, not built outside of
them, which would enable them to inherit these features for
free without giving up performance.
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